

SNS COLLEGE OF TECHNOLOGY

Coimbatore-36. An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE CODE& NAME : 19CSB301 & AUTOMATA THEORY AND COMPILER DESIGN

III YEAR/ V SEMESTER

UNIT – I FINITE AUTOMATA AND REGULAR LANGUAGES

Topic: Types of Grammar Dr.B. Vinodhini

Associate Professor

Department of Computer Science and Engineering

8/21/2024

Types of Grammar

- Grammar in Automata
 - G = (V, T, P, S)
 - V Non-Terminals / Variables /Auxillary Symbols (A,B,C,....)
 - Takes part in generation of sentence (Not a part of sentence)
 - T Terminals (small-case letters a,b,c,....)
 - P-Production Rules
 - S Start Symbol

<u>Example1</u>

 $V = \{S\}$ T = {a, b} P = {S \rightarrow aSbS, S \rightarrow bSaS, S \rightarrow \in } S = {S}

<u>Example2</u>

$$V = \{S,A,B\}$$

$$T = \{a,b\}$$

$$P = \{S \rightarrow ABA, A \rightarrow BB, B \rightarrow ab, AA \rightarrow b\}$$

$$S = \{S\}$$

concepts and Types of Grammar/19CSB301 -AUTOMATA THEORY AND COMPILER DESIGN/ /VINODHINI.B/CSE/SNSCT i

(Chomsky Hierarchy)

8/21/2024

concepts and Types of Grammar/19CSB301 -AUTOMATA THEORY AND COMPILER DESIGN/

Chomsky Hierarchy

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Туре 3	Regular grammar	Regular language	Finite state automaton

Type $3 \subseteq$ Type2, Type 1, Type 0 Type $2 \subseteq$ Type 1, Type 0 Type $1 \subseteq$ Type 0

8/21/2024

concepts and Types of Grammar/19CSB301 - AUTOMATA THEORY AND COMPILER DESIGN/

Chomsky Hierarchy

- Type 0 (Unrestricted)
 - $-\alpha \rightarrow \beta$
 - $\alpha \in (V+T)^+ \leftarrow excluding \in$
 - $-\beta \in (V+T)^* \leftarrow including \in$
 - $\, \alpha \neq \in$
- Type 1 (Context Sensitive Grammar)
 - $-\alpha \rightarrow \beta$
 - $|\alpha| \le |\beta|$
- Type 2 (Context Free Grammar)
 - $-\alpha \rightarrow \beta$
 - $-\alpha \in V$
 - $-\beta \in (V+T)^*$
- Type 3 (Restricted)
 - V→VT*/T* (Right Regular Language) OR T*V/T* (Left Regular language)
 - Example: $A \rightarrow aB$, $A \rightarrow a$

8/21/2024

Chomsky Hierarchy

<u>Rules</u>

Type $0 \rightarrow \alpha \neq \in$ Type $1 \rightarrow |\alpha| \le |\beta|$ Type $2 \rightarrow \alpha \in V, \beta \in (V+T)^*$ Type $3 \rightarrow \alpha - aB$ or $\alpha - a$

8/21/2024

- John E. Hopcroft and Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Second Edition, Pearson Education, New Delhi, (2007) (UNIT-I)
- Linz P.An introduction to formal languages and automata. Sixth edition, Jones and Bartlett Publishers; 2016.(UNIT-I)
- <u>Ramaiah k. Dasaradh</u> "Introduction to Automata and Compiler Design "First Edition ,Prentice Hall India Learning Private Limited(2011)(UNIT-I to V)

