

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MECHANICAL ENGINEERING

19MEE403 - Industrial Digitalization

IV YEAR / VII SEM

UNIT - 2 SMART FACTORY AND PRODUCT LIFE CYCLE MANAGEMENT

PRODUCT DATA

Product data refers to the detailed information associated with a product throughout its lifecycle, from design and development to manufacturing, distribution, and end-of-life management. This data is crucial for ensuring that products meet quality standards, comply with regulations, and satisfy customer needs.

Here are the main types of product data:

1.Design Data

- **1.Description**: This includes all the information related to the design of the product, such as drawings, schematics, 3D models, and design specifications.
- 2.Examples: CAD files, blueprints, design notes, and engineering drawings.

2.Material Data

- **1.Description**: Material data encompasses the details about the raw materials and components used in the product, including their properties, grades, and sources.
- 2.Examples: Material specifications, supplier information, and certificates of conformity.

3. Manufacturing Data

- **1.Description**: This type of data covers the information related to the manufacturing processes, equipment, and parameters used to produce the product.
- **2.Examples**: Process flowcharts, machine settings, work instructions, and quality control measures.

PRODUCT DATA TYPES

Bill of Materials (BOM)

- •Description: A BOM is a comprehensive list of all the materials, components, and assemblies required to manufacture the product.
- •Examples: Lists of parts, quantities, part numbers, and sources.

Product Specifications

- •Description: These are the detailed technical requirements that the product must meet, including dimensions, tolerances, performance standards, and regulatory compliance.
- •Examples: Specification sheets, technical standards, and regulatory certifications.

Test and Validation Data

- •Description: This data includes the results of tests and validation processes that confirm the product meets design and performance criteria.
- •Examples: Test reports, validation protocols, failure analysis, and certification documents

OBE 33

PRODUCT DATA TYPES

Product Lifecycle Data

- •Description: Lifecycle data tracks the product from its initial concept through design, production, and eventually disposal or recycling.
- •Examples: Lifecycle analysis reports, environmental impact assessments, and end-of-life disposal guidelines.

Usage and Maintenance Data

- •Description: This includes information on how the product should be used, maintained, and serviced throughout its operational life.
- •Examples: User manuals, maintenance schedules, service bulletins, and troubleshooting guides.

Sales and Marketing Data

- •Description: Data related to how the product is marketed and sold, including customer demographics, pricing strategies, and market feedback.
- •Examples: Product catalogs, pricing data, sales forecasts, and customer feedback.

Regulatory and Compliance Data

- •Description: This includes information necessary to ensure that the product complies with relevant laws, regulations, and industry standards.
- •Examples: Compliance certificates, safety data sheets (SDS), and regulatory filings.

PRODUCT LIFECYCLE MANAGEMENT (PLM)

Product Lifecycle Management (PLM) systems are comprehensive software solutions designed to manage the entire lifecycle of a product, from its initial concept and design through manufacturing, distribution, and eventual retirement. PLM systems integrate people, processes, business systems, and data across the entire product lifecycle, providing a centralized platform for managing all product-related information.

PRODUCT LIFECYCLE MANAGEMENT - FEATURES

1. Centralized Data Management

•Description: PLM systems provide a single source of truth for all product-related data, ensuring that all stakeholders have access to the most up-to-date information.

2. Document and Content Management

•Description: This feature allows for the storage, organization, and management of all documents and content related to the product, including design files, specifications, manuals, and regulatory documents.

3. Product Data Management (PDM)

•Description: PDM within a PLM system manages the creation, change, and archival of product-related data, such as CAD models, bills of materials (BOMs), and part lists.

4. Bill of Materials (BOM) Management

•Description: BOM management allows users to create, manage, and share detailed lists of materials, components, and assemblies required to build a product.

5. Change Management

•Description: Change management features track and manage changes to product designs, processes, and documentation throughout the product lifecycle.

PRODUCT LIFECYCLE MANAGEMENT - FEATURES

6. Collaboration and Workflow Management

•Description: PLM systems provide tools for collaboration among cross-functional teams, including designers, engineers, suppliers, and manufacturers. Workflow management features help automate and streamline processes.

7. Project Management

•Description: Project management features allow users to plan, track, and manage product development projects, including timelines, milestones, resources, and budgets.

8. Regulatory Compliance Management

•Description: PLM systems help organizations manage and comply with industry standards and regulatory requirements by integrating compliance checks and documentation into the product development process.

9. Supplier and Manufacturing Collaboration

•Description: This feature enables collaboration with suppliers and manufacturers, including sharing designs, specifications, and requirements.

10. Product Portfolio Management

•Description: PLM systems allow organizations to manage their entire product portfolio, including tracking the performance, costs, and profitability of each product.

ELEMENTS OF SYSTEM ARCHITECTURE

Key Elements of System Architecture

Components:

Description: These are the individual parts or modules that make up the system. Components can include software modules, hardware devices, databases, user interfaces, and external services.

Examples: In a web application, components may include the user interface, backend server, database, and API services.

Layers:

Description: System architecture often organizes components into layers, each with a specific responsibility. This layering helps in managing complexity and promoting separation of concerns.

Common Layers:

Presentation Layer: Handles the user interface and user interaction.

Application Layer: Contains the business logic and rules.

Data Layer: Manages data storage, retrieval, and persistence.

Infrastructure Layer: Supports the underlying system, including network, servers, and databases.

ELEMENTS OF SYSTEM ARCHITECTURE

Interfaces:

Description: Interfaces define how different components of the system communicate with each other. They include APIs, protocols, and data formats.

Examples: RESTful APIs, GraphQL interfaces, and SOAP protocols are common interfaces used in web services.

Data Flow:

Description: Data flow refers to the movement of data between components within the system. It defines how data is input, processed, stored, and output by the system.

Examples: In an e-commerce application, data flows from the user interface (e.g., adding items to a cart), to the business logic (e.g., processing orders), and finally to the data layer (e.g., storing order details).

Integration Points:

Description: These are specific points where the system integrates with external systems or services, such as third-party APIs, databases, or legacy systems.

Examples: A payment gateway integration in an e-commerce platform or a CRM system connecting to an email marketing service.

Thank Ofour