

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB201 – DIGITAL SYSTEM DESIGN

II YEAR/ III SEMESTER

UNIT I – BOOLEAN THEOREMS AND LOGIC REDUCTION

1.1- NUMBER SYSTEM

NUMBER SYSTEMS

Numbers - We use numbers to communicate perform tasks quantify measure

> The number system has a base of 16 means there are total 16 symbols(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Number system in digital electronics

- \succ A system that is used for representing numbers is called the number system
- > In digital electronics, the numbers are used to represent the information
- \succ it is important to learn and understand different types of number systems so we can easily represent and interpret the information in the form of numbers

NUMBER SYSTEMS

- Numbers We use numbers to communicate perform tasks quantify measure
- > The number system has a base of 16 means there are total 16 symbols(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Number system in digital electronics

- > A system that is used for representing numbers is called the number system
- > In digital electronics, the numbers are used to represent the information
- \succ it is important to learn and understand different types of number systems so we can easily represent and interpret the information in the form of numbers

NUMBER SYSTEMS

 \succ The digit value in the number system is calculated using: the digit the index, where the digit is present in the number. the base numbers, the total number of digits available in the number system.

Types of Number system

- 1. Binary Number System
- 2. Decimal Number System
- 3. Hexadecimal Number System
- 4. Octal Number System

BINARY NUMBER SYSTEMS

- Generally, a binary number system is used in the digital computers.
- \succ In this number system, it carries only two digits, either 0 or 1
- > There are two types of electronic pulses present in a binary number system first one is the absence of an electronic pulse representing '0' second one is the presence of electronic pulse representing '1'
- \succ Each digit is known as a bit
- \succ A four-bit collection (1101) is known as a nibble
- \succ collection of eight bits (11001010) is known as a byte
- > The location of a digit in a binary number represents a specific power of the base (2) of the number system

Characteristics

- \succ It holds only two values, i.e., either 0 or 1
- It is also known as the base 2 number system
- \succ The position of a digit represents the 0 power of the base(2). Example: 2^o
- \succ The position of the last digit represents the x power of the base(2). Example: 2^x, where x represents the last position, i.e., 1

Examples:

 $(10100)_2$, $(11011)_2$, $(11001)_2$, $(000101)_2$, $(011010)_2$.

9/3/2024

BINARY NUMBER SYSTEMS

- > Generally, a binary number system is used in the digital computers
- \succ In this number system, it carries only two digits, either 0 or 1
- > There are two types of electronic pulses present in a binary number system first one is the absence of an electronic pulse representing '0' second one is the presence of electronic pulse representing '1'
- \succ Each digit is known as a bit
- > A four-bit collection (1101) is known as a nibble
- \succ collection of eight bits (11001010) is known as a byte
- \succ The location of a digit in a binary number represents a specific power of the base (2) of the number system

Characteristics

- \succ It holds only two values, i.e., either 0 or 1
- It is also known as the base 2 number system
- \succ The position of a digit represents the 0 power of the base(2). Example: 2^o
- \succ The position of the last digit represents the x power of the base(2). Example: 2^x, where x represents the last position, i.e., 1

Examples:

 $(10100)_2$, $(11011)_2$, $(11001)_2$, $(000101)_2$, $(011010)_2$.

DECIMAL NUMBER SYSTEMS

- \succ The decimal numbers are used in our day to day life.
- > The decimal number system contains ten digits from 0 to 9(base 10)
- > The position in the decimal number system specifies the power of the base (10)
- > The 0 is the minimum value of the digit, and 9 is the maximum value of the digit
- For example

the decimal number 2541 consist of the digit

1 in the unit position

4 in the tens position

- 5 in the hundreds position
- 2 in the thousand positions and the value will be written as

```
(2 \times 1000) + (5 \times 100) + (4 \times 10) + (1 \times 1)
(2 \times 10^{3}) + (5 \times 10^{2}) + (4 \times 10^{1}) + (1 \times 10^{0})
2000 + 500 + 40 + 1
2541
```


se (10) he digit

 \succ The octal number system has base 8(means it has only eight digits from 0 to 7)

- \succ There are only eight possible digit values to represent a number
- > With the help of only three bits, an octal number is represented
- \succ Each set of bits has a distinct value between 0 and 7.

Characteristics

- \succ An octal number system carries eight digits starting from 0, 1, 2, 3, 4, 5, 6, and 7
- It is also known as the base 8 number system
- \succ The position of a digit represents the 0 power of the base(8) Example: 8^o
- > The position of the last digit represents the x power of the base(8). Example: 8^{x} , where x represents the last position, i.e., 1

Number	Octal Number	
0	000	
1	001	(
2	010	(
3	011	
4	100	
5	101	
6	110	
7	111	

Examples:

 $(273)_8$, $(5644)_8$, $(0.5365)_8$, $(1123)_8$, $(1223)_{8}$

23ECB201/ Digital System Design / Dr.B.Sivasankari / Professor / ECE

Activity

		-	¥	0	⋏
\mathbf{Q}	\bigcirc			×	A
	M			() .	Y ?
			AXA	Â.	\bigotimes
			Ø	ಶಿ	N
Y	×	0000	1)	Ć

23ECB201/ Digital System Design / Dr.B.Sivasankari / Professor / ECE

HEXADECIMAL NUMBER SYSTEMS

- \succ It is another technique to represent the number in the digital system called the hexadecimal number system
- \succ The number system has a base of 16 means there are total 16 symbols(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) used for representing a number
- > The single-bit representation of decimal values10, 11, 12, 13, 14, and 15 are represented by A, B, C, D, E, and F
- > Only 4 bits are required for representing a number in a hexadecimal number. Each set of bits has a distinct value between 0 and 15

Characteristics:

1. It has ten digits from 0 to 9 and 6 letters from A to F.

2. The letters from A to F defines numbers from 10 to 15.

3. It is also known as the base 16 number system.

4.In hexadecimal number, the position of a digit represents the 0 power of the base(16). Example: 16⁰

5.In hexadecimal number, the position of the last digit represents the x power of the base(16). Example: 16^x, where x represents the last position, i.e., 1

HEXADECIMAL NUMBER SYSTEMS

Binary Number	Hexadecimal Number
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Examples: $(FAC2)_{16}$, $(564)_{16}$, $(0ABD5)_{16}$, $(11F3)_{16}$

23ECB201/ Digital System Design / Dr.B.Sivasankari /Professor /ECE

$(1123)_{16}, (1123)_{16},$

ASSESSMENTS ?

- 1. List out the primary number systems used in digital electronics
- 2. How do you convert a binary number to its decimal equivalent, and vice versa?
- 3. What are signed and unsigned binary numbers, and how do they differ?

23ECB201/ Digital System Design / Dr.B.Sivasankari / Professor / ECE

