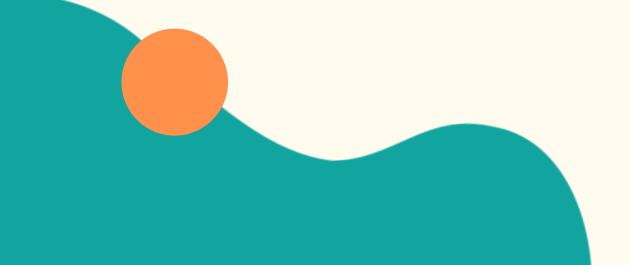


SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A++' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

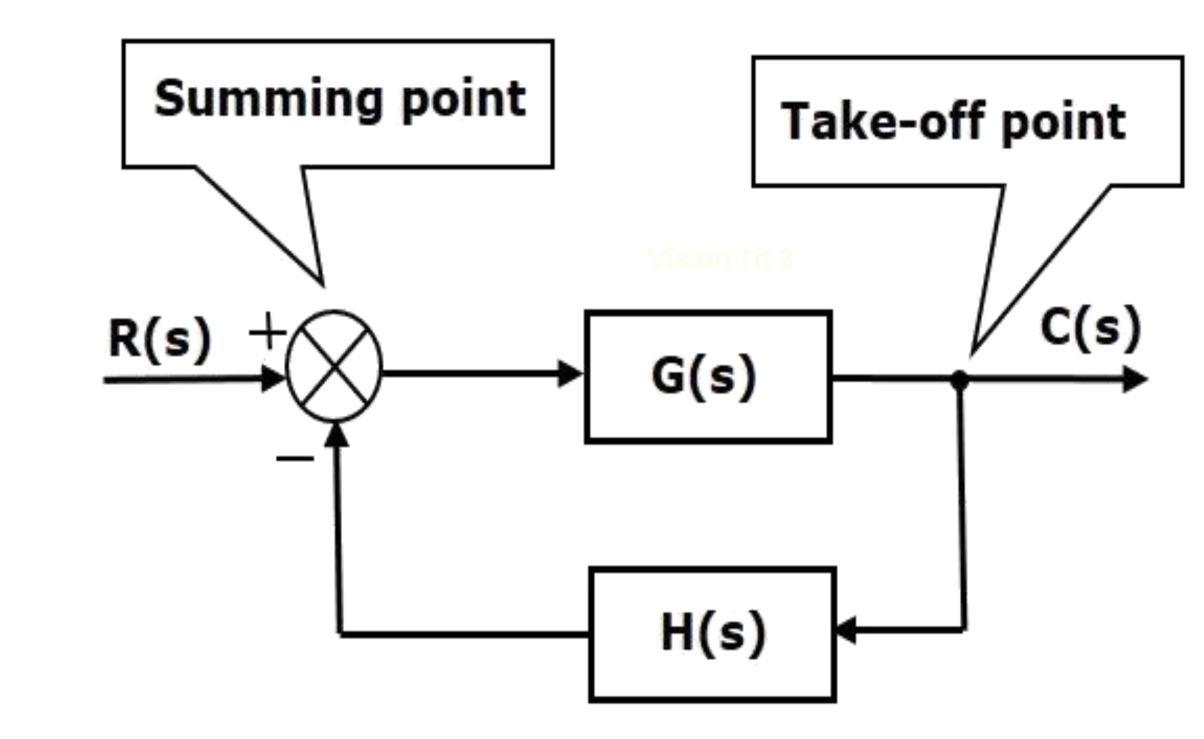

Department of Biomedical Engineering

Course Name: Control Systems

III Year : V Semester

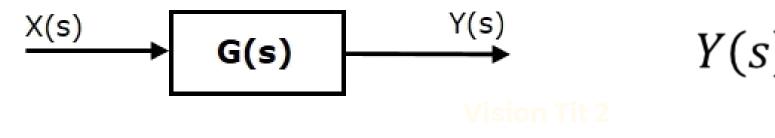
Unit I – INTRODUCTION TO PHYSIOLOGICAL MODELING

Topic : Block Diagram Reduction


Block Diagram

- Block diagrams consist of a single block or a combination of blocks.
- These are used to represent the control systems in pictorial form.
- Signal into the block represents the input R(s) and signal out of block represents output C(s), while the block itself stands for the transfer function G(s).
- Flow of information is unidirectional, output being equal to input multiplied by the transfer function of the block.

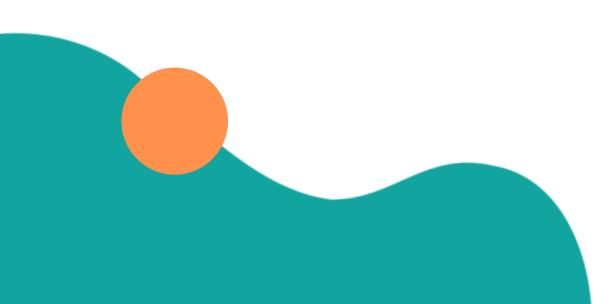
Basic Elements of Block Diagram



Basic Elements of Block Diagram

• Summing Point:

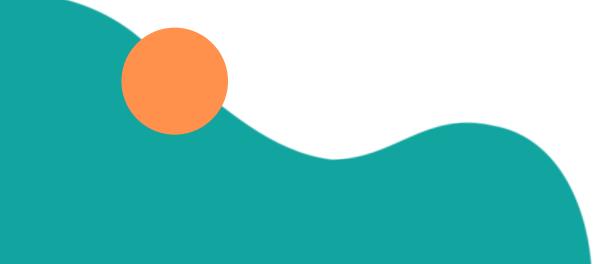
Block:



Y(s) = G(s) * X(s)

Rules for BDR

- Reduce the series blocks \bullet
- Reduce the parallel blocks. ullet
- Reduce minor feedback loops. lacksquare
- As for as possible shift summing point to the left and take-off point to the right.
- Repeat the above steps till canonical form is obtained. \bullet


Rules for BDR

	Manipulation	Original Block Diagram	Equivalent Block Diagram	Equation
1	Combining Blocks in Cascade	$X \longrightarrow \overline{G_1} \rightarrow \overline{G_2} \longrightarrow Y$	$X \longrightarrow G_1G_2 \longrightarrow Y$	$Y = (G_1 G_2) X$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	$X \longrightarrow G_1 \longrightarrow Y$ $\pm A Y$ G_2	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	$Y{=}(G_{\!\!1}\pm G_{\!\!2})X$
3	Moving a pickoff point behind a block	$u \longrightarrow G \longrightarrow y$	$u \longrightarrow G \longrightarrow y$ $u \checkmark 1/G$	$y = G u$ $u = \frac{1}{G} y$
4	Moving a pickoff point ahead of a block	$\begin{array}{c} u \longrightarrow G & & \\ y & & \\ y & & \end{array}$	$u \xrightarrow{\qquad } G \xrightarrow{\qquad } y$	y = Gu
5	Moving a summing point behind a block	$u_1 \longrightarrow G \longrightarrow G$ $u_2 \longrightarrow G$	$u_1 \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G$	$e_2 = G(u_1 - u_2)$
6	Moving a summing point ahead of a block	$u_1 \longrightarrow G \longrightarrow y$ u_2	$u_1 \longrightarrow G \longrightarrow y$ $1/G \longleftarrow u_2$	$y = Gu_1 - u_2$
			$u \xrightarrow{G_2} 1/G_2 \xrightarrow{G_1} y$	$y = (G_1 - G_2)u$

Thank You

