

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A++' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

Department of Biomedical Engineering

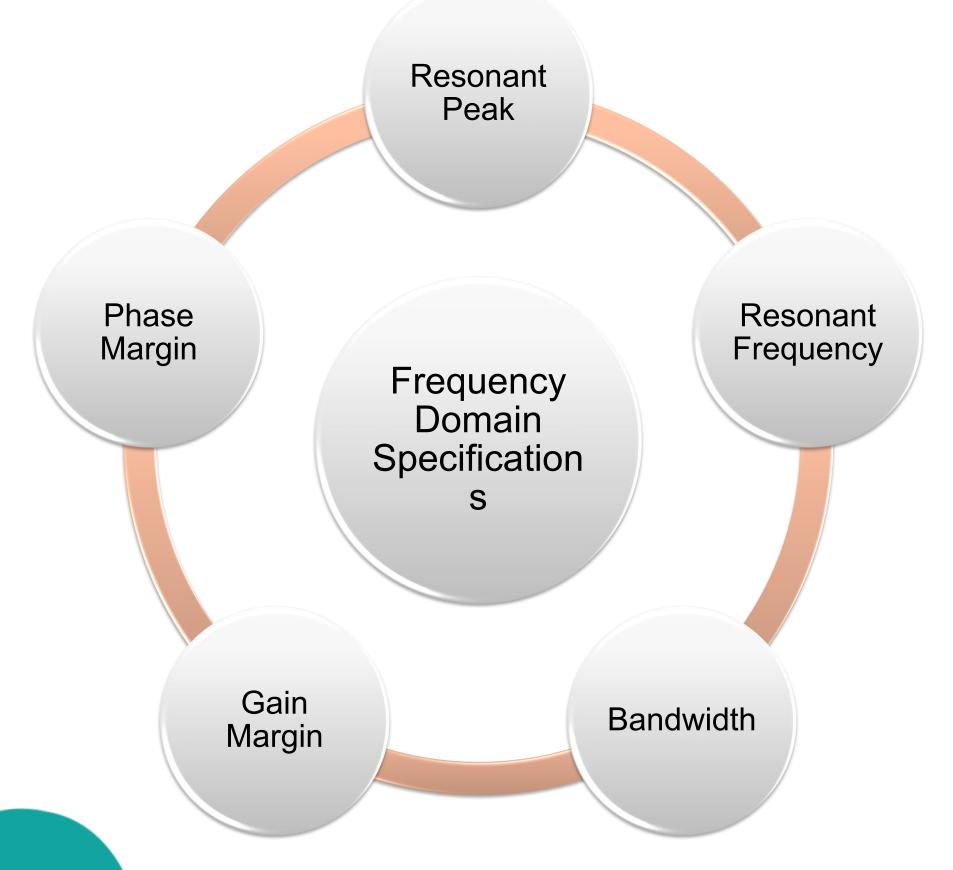
Course Name: Control Systems

III Year: V Semester

Unit III – Frequency Response Analysis

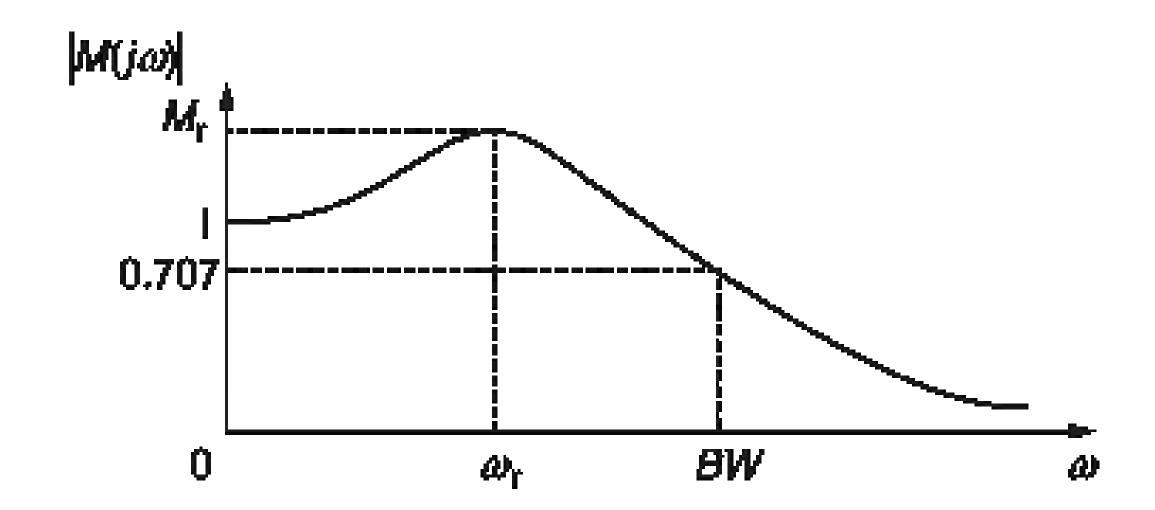
Topic: Frequency Domain Specifications

Frequency Domain Specifications



Frequency Domain Specifications

• The steady state response of a system to a purely sinusoidal input is defined as the frequency response of a system.



Frequency Domain Specifications

Consider the transfer function of the second order closed loop control system as

$$T(s) = rac{C(s)}{R(s)} = rac{\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2}$$

• Substitute, $s=j\omega$ in the above equation.

$$T(j\omega) = rac{\omega_n^2}{(j\omega)^2 + 2\delta\omega_n(j\omega) + \omega_n^2}$$

Magnitude of T(jω) is

$$M=\left|T\left(j\omega
ight)
ight|=rac{1}{\sqrt{\left(1-u^2
ight)^2+\left(2\delta u
ight)^2}}$$

Phase of T(jω) is

$$ngle T\left(j\omega
ight) = -tan^{-1}\left(rac{2\delta u}{1-u^2}
ight)$$

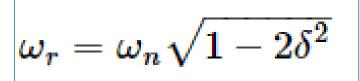
Resonant Frequency

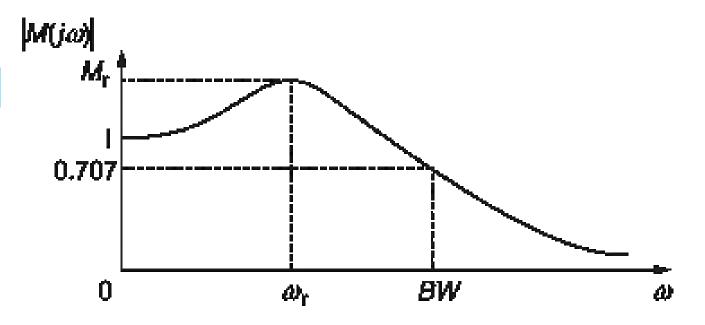
• It is the frequency at which the magnitude of the frequency response has peak value for the first time. It is denoted by ω_r . At $\omega = \omega_r$, the first derivate of the magnitude of $T(j\omega)$ is zero.

$$rac{\mathrm{d}M}{\mathrm{d}u} = -rac{1}{2} \Big[\left(1-u^2
ight)^2 + \left(2\delta u
ight)^2 \Big]^{rac{-3}{2}} \, \left[2\left(1-u^2
ight)\left(-2u
ight) + 2\left(2\delta u
ight)\left(2\delta
ight) \Big]$$

Substitute, $u=u_r$ and $rac{\mathrm{d} M}{\mathrm{d} u}==0$ in the above equation.

$$u_r = \sqrt{1 - 2\delta^2}$$





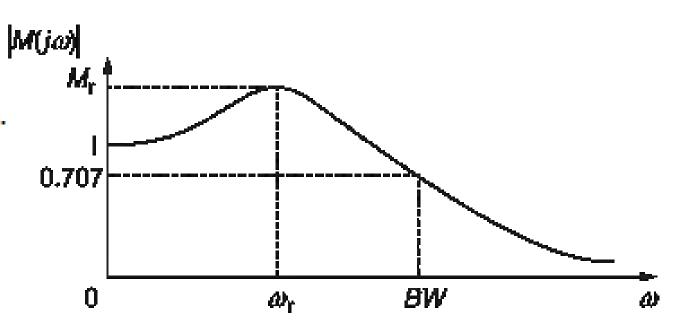
Resonant Peak

- It is the peak (maximum) value of the magnitude of $T(j\omega)$. It is denoted by M_r .
- At u=u_r, the Magnitude of T(jω) is –

$$M_r = rac{1}{\sqrt{{{{\left({1 - u_r^2}
ight)}^2} + {{{\left({2\delta {u_r}}
ight)}^2}}}}$$

Substitute, $u_r=\sqrt{1-2\delta^2}$ and $1-u_r^2=2\delta^2$ in the above equation.

$$egin{align} M_r &= rac{1}{\sqrt{\left(2\delta^2
ight)^2 + \left(2\delta\sqrt{1-2\delta^2}
ight)^2}} \ &\Rightarrow M_r &= rac{1}{2\delta\sqrt{1-\delta^2}} \ \end{aligned}$$

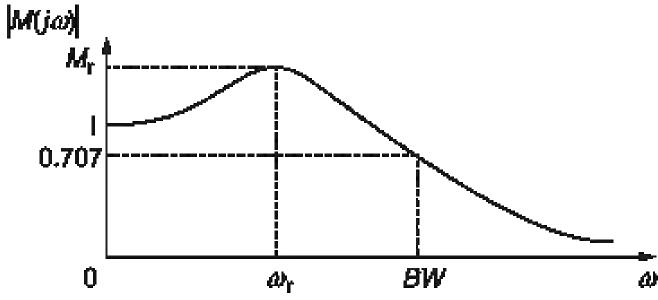


Bandwidth

- It is the range of frequencies over which, the magnitude of $T(j\omega)$ drops to 70.7% from its zero frequency value.
- At 3-dB frequency, the magnitude of $T(j\omega)$ will be 70.7% of magnitude of $T(j\omega)$ at $\omega=0$.
- i.e., at $\omega = \omega_b M = 0.707(1) = 1/\sqrt{2}$

$$\Rightarrow M = rac{1}{\sqrt{2}} = rac{1}{\sqrt{\left(1-u_b^2
ight)^2+\left(2\delta u_b
ight)^2}}$$

$$\Rightarrow \omega_b = \omega_n \sqrt{1-2\delta^2+\sqrt{(2-4\delta^2+4\delta^4)}}$$



Thank You

ŏ

