

## **SNS COLLEGE OF TECHNOLOGY**

Vazhiyampalayam, Coimbatore, Tamil Nadu, 641035

#### **An Autonomous Institution**

Approved by AICTE New Delhi & Affiliated to Anna University Chennai Accredited by NBA & Accredited by NAAC with "A++" Grade, Recognized by UGC

## **DEPARTMENT CIVIL ENGINEERING**

## 19CEE303 – REMOTE SENSING

## **III YEAR / V SEMESTER**

# Unit 2 : Radiometric and Temporal Resolutions









# **Remote Sensing Systems**

# (iii) Radiometric and Temporal Resolutions

D. Nagesh

Remote Sensing: M2L3



## **Types of Resolution**



- 4 types of resolutions are defined for the remote sensing systems
  - Spatial resolution
  - Spectral resolution
  - Temporal resolution
  - Radiometric resolution



## **Resolution...**



## Spatial resolution

- Size of the smallest dimensions on the earth's surface over which an independent measurement can be made by the sensor
- Spectral resolution
  - Ability of a sensor to define fine wavelength intervals
- Temporal resolution
- Radiometric resolution

#### This lecture covers the details of Temporal and Radiometric resolution



## **Radiometric Resolution**



## Radiometric resolution: Sensitivity of the sensor to the magnitude of

#### the

electromagnetic energy

- How many grey levels are measured between pure black (no reflectance) to pure white (maximum reflectance)
- The finer the radiometric resolution of a sensor the more sensitive it is in detecting small differences in the energy
- The finer the radiometric resolution of a sensor the system can measure more number of grey levels



#### **Radiometric Resolution...**



- Radiometric resolution is measured in Bits
  - Each bit records an exponent of power 2
- Maximum number of brightness levels available depends on the number of bits used in representing the recorded energy

|                    | Radiometr             | Number of levels            | Example                               |
|--------------------|-----------------------|-----------------------------|---------------------------------------|
| Poor               | ic<br>▶<br>resolution |                             |                                       |
|                    | 1 bit                 | $2^1 - 2$ levels            |                                       |
| High<br>resolution | 7 bit                 | 2 <sup>7</sup> – 128 levels | IRS 1A & 1B                           |
|                    | <sup>▶</sup> 8 bit    | 2 <sup>8</sup> – 256 levels | Landsat TM                            |
|                    | 11 bit                | $2^{11} - 20$               | A A A A A A A A A A A A A A A A A A A |

Radiometric resolution and the corresponding brightness levels available



#### **Radiometric Resolution and Number of Grey Levels**



- Tones in an image vary from black to white
- Black  $\rightarrow$  Digital Number = 0  $\rightarrow$  No reflectance
- White  $\rightarrow$  Digital Number is the maximum





#### **Radiometric Resolution and Level of Information**



- Finer radiometric resolution
  - More the number of grey levels
  - More details can be captured in the image

- Finer radiometric resolution
  - Increases the data storage requirements

2 Bit Data (Coarse)



8 Bit Data (Fine)





## **Radiometric Resolution and Digital Number**



Digital number (DN) depends on the number of brightness levels

Lower DN value in a coarse resolution image

Higher DN value in a fine resolution image

#### **Example**

- DNs recorded by the 3-bit system range from 0 to 7
- This range is equivalent to 0-63 for the 6 bit system

0 1 2 3 4 5 6 7 (3 bit) 0 9 18 27 36 45 54 63 (6 bit)

DN of 45 (6-bit)  $\rightarrow$  5 (3-bit)

#### To compare two images, their radiometric resolution should be the same



## **Temporal Resolution**



#### • Temporal resolution

#### Number of times an object is sampled

or

#### How often data are obtained for the same area

- The absolute temporal resolution of a remote sensing system to image the same area at the same viewing angle a second time is equal to the repeat cycle of a satellite.
- The repeat cycle of a near polar orbiting satellite is usually several days

Example: 24 days for IRS-1C and Resourcesat-2, 18 days for Landsat, 14days for IKONOS

- Actual temporal resolution (or revisit period) of a sensor depends on
  - The satellite/sensor capabilities
  - Swath overlap and Latitude



# E X

## Swath Overlap and Latitude

- Sidelap in the swaths of the adjacent orbits increases the frequency of imaging
- Sidelap increases with latitude,
  increasing the frequency of images
  available for the polar region



Paths of a Typical Near-Polar Satellite



Towards the polar region, satellite orbits come closer to each other. More frequent images are available for the polar region



## Satellite Capabilities and Temporal Resolution



• More frequent imaging is possible by off-nadir viewing capabilities



#### Example : IKONOS

Sensor characteristics: Pointable optics

Repeat cycle: 14 daysRevisit period: 1-3 days



## **Importance of Temporal Resolution**



- Images at different time periods show the variation in the spectral characteristics of different features over time
- Applications
  - Land use/ land cove classification
  - Temporal variation in land use / land cover
  - Monitoring of a dynamic events like
    - Cyclone
    - Flood
    - Volcano
    - Earthquake



## **Flood Studies**



 Satellite images before and after the flood event help to identify the aerial extent of the flood during the progress and recession of a flood event

Landsat TM images of the Mississippi River taken during a normal period and during the great flood of 1993





## Land Use/ Land Cover Classification



- Temporal variation in the spectral signature can be estimated
- Presence of features over time can be identified
- Continuous change in the vegetation characteristics can be monitored
  - Used to classify the crop types viz., perennial crops, long or short duration crops



#### Land Use/ Land Cover Classification: MODIS data product for the Krishna River Basin





#### FCC (RGB): 2,1,6 (NIR, red, MIR1) Krishna river basin, India

Remote Sensing: M2L3



## Signal-to-Noise Ratio



Signal-to-noise ratio (SNR) depends on strength of signal and the noise of the system

- Signal (say reflectance)
- Noise from aberrations in the electronics, moving parts or defects in the scanning system
- Higher the SNR  $\rightarrow$  Differentiation of the noise from the actual signals is easier
  - Finer spatial, spectral and radiometric resolutions of a system may decrease the SNR to such an extent that the data may not be reliable
    - Higher spectral and spatial resolution reduces the energy (signal strength) → reduces the SNR
    - Finer radiometric resolution  $\rightarrow$  larger number of grey levels
      - If the difference in the energy level between the two levels is less than the noise, reliability of the recorded grey level diminishes.



## **Trade-off Between Resolutions**



Fine spatial resolution  $\rightarrow$  small IFOV  $\rightarrow$  less energy

- Difficult to detect fine energy differences  $\rightarrow$  Poor radiometric resolution
- Poor spectral resolution

Narrow spectral bands  $\rightarrow$  High spectral resolution  $\rightarrow$  Less energy

- Difficult to detect fine energy differences  $\rightarrow$  Poor radiometric resolution
- Poor spatial resolution

Wide spectral band  $\rightarrow$  Poor spectral resolution  $\rightarrow$  more reflected energy

- Good spatial resolution
- Good radiometric resolution

These three types of resolutions must be balanced against the desired capabilities and objectives of the sensor





# THANK YOU