

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) **COIMBATORE - 35**

UNIT 2 FOURIER SERIES PARSEVAL'S IDENTITY

Posseval's Identity
For the interval
$$(-l,l)$$
, the parsavals identity is
 $\frac{1}{2} \int_{-2}^{1} [f(n)]^2 dn = \frac{\alpha_0^2}{4} + \frac{10}{2} (\alpha_n^2 + b_n^2)$
 $\frac{1}{2} \int_{-2}^{1} [f(n)]^2 dn = \frac{\alpha_0^2}{2} + \frac{\pi}{2} (\alpha_n^2 + b_n^2)$
 $\frac{1}{2} \int_{0}^{2} [f(n)]^2 dn = \frac{\alpha_0^2}{2} + \frac{\pi}{2} \alpha_n^2$
For half range covine series,
 $\frac{2}{2} \int_{0}^{2} [f(n)]^2 dn = \frac{\alpha_0^2}{2} + \frac{\pi}{2} \alpha_n^2$
For half range Size series
 $\frac{2}{2} \int_{0}^{2} [f(n)]^2 dn = \frac{\pi}{2} b_n^2$.
1. Find the fourier series or $f(n) = \pi^2$ is $-\pi < x < \pi$
and deduce that
 $i) \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{2^2} + \dots = \frac{\pi^2}{12}$
 $ii) \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$
 $iv) \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$

90

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

UNIT 2 FOURIER SERIES PARSEVAL'S IDENTITY

Put
$$x = 0$$
 B D
 $D = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} {\binom{-1}{n^2}} (000)$
 $= \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} {\frac{(-1)^n}{n^2}}$
 $-\frac{\pi^2}{3} = 4 \sum_{n=1}^{\infty} {\frac{(-1)^n}{n^2}}$
 $-\frac{\pi^2}{3} = 4 \sum_{n=1}^{\infty} {\frac{(-1)^n}{n^2}}$
 $-\frac{\pi^2}{12} = \left[{\frac{-1}{1^2}} + {\frac{1}{2^2}} + {\frac{1}{3^2}} + {\frac{1}{3^2}} + {\frac{1}{3^2}} + {\frac{1}{3^2}} \right]$
 $-\frac{\pi^2}{12} = - \left[{\frac{1}{1^2}} - {\frac{1}{2^2}} + {\frac{1}{3^2}} - {\frac{1}{3^2}} + {\frac{1}{3^2}} - {\frac{1}{3^2}} \right]$
 $\frac{\pi^2}{12} = \left[{\frac{1}{1^2}} - {\frac{1}{2^2}} + {\frac{1}{3^2}} - {\frac{1}{3^2}} \right] \rightarrow 0$

Put
$$x = \pi$$
 is (1)

$$\pi^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n\pi$$

$$\pi^{2} - \frac{\pi^{2}}{3} = 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n\pi$$

$$\frac{2\pi^{2}}{3} = 4 \left[\frac{(-1)\cos n\pi}{1^{2}} + \frac{(-1)^{2}\cos 2\pi}{2^{2}} + \frac{(-1)^{3}\cos 2\pi}{3^{2}} + \cdots \right]$$

$$\frac{2\pi^{2}}{3} = 4 \left[\frac{(-1)\cos n\pi}{1^{2}} + \frac{(-1)^{2}\cos 2\pi}{2^{2}} + \frac{(-1)^{3}\cos 2\pi}{3^{2}} + \cdots \right]$$

$$\frac{2\pi^{2}}{3} = 4 \left[\frac{(-1)\cos n\pi}{1^{2}} + \frac{(-1)(-1)}{2^{2}} + \frac{(-1)(-1)}{3^{2}} + \cdots \right]$$

$$\frac{2\pi^{2}}{3} = 4 \left[\frac{(-1)\cos n\pi}{1^{2}} + \frac{(-1)(-1)}{2^{2}} + \frac{(-1)(-1)}{3^{2}} + \cdots \right]$$

UNIT 2 FOURIER SERIES PARSEVAL'S IDENTITY

$$f(x) = x^{2} \quad \text{in} \quad -\pi < x < x < \pi$$

$$f(x) = x^{2} \quad \text{in} \quad -\pi < x < x < \pi$$

$$f(x) = x^{2} \quad \text{even function}$$
Fourier series is
$$f(x) = \frac{\alpha_{0}}{2} + \frac{S}{2} \quad \alpha_{1} \text{ cosnyr}$$

$$\alpha_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} dx = \frac{1}{\pi} \left[\frac{x^{3}}{\pi} \right]_{0}^{\pi}$$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos nx dx \quad u = x^{2} \quad v = \cos nx$$

$$= \frac{2}{\pi} \int_{-\pi}^{\pi} x^{2} \cos nx dx \quad u^{2} = x \quad v_{1} = \frac{\sin nx}{n^{2}}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos nx dx \quad u^{2} = 2 \quad v_{2} = -\frac{\cos nx}{n^{2}}$$

$$= \frac{2}{\pi} \left[x^{2} \frac{\sin nx}{n} + 2x \frac{\cos nx}{n^{2}} - 2 \frac{\sin nx}{n^{3}} \right]_{0}^{\pi} \quad v_{3} = -\frac{\sin nx}{n^{3}}$$

$$= \frac{2}{\pi} \left[x^{2} \frac{\sin nx}{n} + 2x \frac{\cos n\pi}{n^{2}} - 2 \frac{\sin n\pi}{n^{3}} - \left[0 + 0 - \frac{2 \sin nx}{n^{3}} \right] \right]$$

$$= \frac{2}{\pi} \left[\frac{2\pi (-1)^{n}}{n^{2}} \right] = \frac{A(-1)^{n}}{n^{2}} \qquad \alpha_{1} = \frac{A(-1)^{n}}{n^{2}}$$

$$= \frac{1}{\pi^{2}} \left[\frac{2\pi}{n^{2}} + \frac{S}{n^{2}} \alpha n \cos nx}{n^{2}} \right]$$

$$= \frac{1}{\pi^{2}} \left[\frac{2\pi}{n^{2}} + \frac{S}{n^{2}} \alpha n \cos nx}{n^{2}} \right]$$

$$= \frac{1}{\pi^{2}} \left[\frac{\pi^{2}}{n^{2}} + \frac{S}{n^{2}} \alpha n \cos nx}{n^{2}} \right]$$

$$= \frac{1}{\pi^{2}} \left[\frac{\pi^{2}}{n^{2}} + \frac{\pi^{2}}{n^{2}} + \frac{(-1)^{n}}{n^{2}} \cos nx}{n^{2}} \right]$$

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

4 | 1

UNIT 2 FOURIER SERIES PARSEVAL'S IDENTITY

$$\frac{\pi^{2}}{b} = \left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{\pi^{2}}{b} \rightarrow \emptyset\right]$$
Adding (2) 2(3)
$$2\left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{\pi^{2}}{1^{2}} + \frac{\pi^{2}}{b} = \frac{\pi^{2} + 2\pi^{2}}{1^{2}} \\= \frac{3\pi^{2}}{1^{2}} \\2\left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} + \frac{\pi^{2}}{1^{2}} + \frac{\pi^{2}}{b} - \frac{\pi^{2}}{1^{2}} + \frac{\pi^{2}}$$