

Metal Additive Manufacturing

It's in planes It's in bodies It's in production!

Transforming Industry

Our objective is to change how metal products are manufactured, transforming the industry from conventional processes to Additive Manufacturing

User benefit - Performance

Design freedom to produce products with new, unique properties

- Weight reduction (aero)
- Advanced cooling (aero)
- Bone ingrowth (implant)

Increased performance, making the product more valuable

User benefit - Cost

Efficiency to replace present technology

- No tooling cost
- Shorter lead time
- Less material use, more efficient

More efficient production, reducing product cost

Fast growing market

Additive Manufacturing in metals grow fast, at about 50% p.a.

Additive Manufacturing in metals is well established for implants and aerospace

in metal, with 18 and 30 percent annual growth 2.5

Market growth 2013-2021 in USD billion for the market for AM

We are in the **beginning** of a long growth journey

How it started

Arcom AB*

- First contacts with University of Gothenburg / Biomaterials in 2004
- Project to study bone ingrowth in EBMmanufactured parts initiated in 2005
- Arcam founding partner of Biomatcell in 2007

BIOMATCELL

VINN Excellence Center of Biomaterials and Cell Therapy

Trabecular structures

Understanding

Why to build Trabecular structures

How to build Trabecular structures

Trabecular structures, Why?

Understanding
The value of
product
differentiation

The value of perfect bone ingrowth

Trabecular structures, How!

Creating design methodology and software to build trabecular structures.

Learning how to

clean structures

Skepticism – to overcome

- Can the AM material really be used, is it same as conventional Ti?
- OK, it fulfils all specs, but is it biocompatible?
- Aha, Italian companies use it, how about someone else?
- Oh, it has CE approval, how about FDA?
- Alright, you have CE and FDA approval, how about SFDA?
 Japanese approval?

- ? Questions
- ? Excuses
- ? Evasions
- ? Challenges

Breakthrough!

 First implant customer, Adler Ortho, in 2006

 First product on the market, Fixa Ti-Por, 2007

Additive in Orthopedics

Around 100 EBM systems in production

AP&C preferred powder supplier for AM and coatings

DiSanto provides contract manufacturing

Broad acceptance and use

2016-04-11

Transforming the Ortho industry

2016-04-11

The Aerospace industry

All of the major aerospace companies embrace Additive Manufacturing

Additive in Aerospace

"Rolls produce for the first flying A350 engine"
"GE produce TiAl for the GE9X engine"
"Pratt & Whitney manufacture for the GTF,
currently in production"

"ABC making business

jet components"

Aerospace potential, example

One component example

Future estimates for blades = 58 to 146 machines

2016-04-11

Transforming the Aero industry 🛧

Weight savings Performance New design, Cost saving Bionic design Cost saving Short series, Low volume. Production, manufacturing, Outliers Easy to capture General Type of product Specific

Arcam Cad to Metal

2016-04-11

Mission Statement

"Arcam provides cost-efficient

Additive Manufacturing solutions for production of metal components."

Focusing on:

- Aerospace components
- Medical implants

Products & Services

On a growth track

"Strong increase in revenue and sound finances give us a solid foundation for continued growth"

Long term objective

to **industrialize** Additive Manufacturing offerings, providing the robust production processes that the industry demand

The future

Disruptive opportunities

Significantly lower production cost through

- Tool-less production
- Lower material cost
- Integrated validation
 - Validation tools, in-process monitoring etc
- Integrated complex structures

Disruptive opportunities

Significant **product values added** through

- Design freedom
- Customization
- Differentiation
- Integrated complex structures

Conclusions

- Competition is casting, forging and machining
- Significant potential for lower cost manufacturing
- Significant potential for improved products

AM will be the most important supplier to the aerospace industry and the largest supplier to the implant industry

Transforming Industry

Our objective is to change how metal products are manufactured, transforming the industry from conventional processes to Additive Manufacturing

