

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Peopertres of Lattices: Let (L, A, V) be a green lattice. Then for any a, b, CEL. D. Idempotent law ana = a and ava = a 2) commutative law and = bha and avb = bva 3). Associative law (anb) nc = an (bnc) and (avb) vc = av (bvc) A). ABSOSPTOBB Jano and av(anb) = a $Q_{\Lambda}(avb) = a$ Peoof: 1). Idempotent law: Now ava = LUB(a, a) = LUB(a) = aava = a $a \wedge a = GLB(a, a) = GLB(a) = q$ and ana =a 2). Commutative law: avb = LUB(a, b) = LUB(b, a) = braNOW and and = GLB(a, b) = GLB(b, a) = bha 3). Assocrative : Let av(bvc) = d > (1) QVB)VC = E -> (2) (1) > d & LUB of (9, by C) > dra and drbvc -> (3) WHIT BUC & LUB OF (B,C) brezbard brezedra dZB d×c (5)

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

(5) + d & an UB of (a, b) and d>c d>avb, and d>c - d & an UB of (avb, c) Sance, e 32 LUB of (avb, c) dxe Mly ezd -: e=d. => av(bvc) = (avb) vc 4). Absorption law: av(anb) = a Sance and B GILB of Ea, by $ahb \leq a \rightarrow (1)$ obviously a za -> (2) (1) and (2), $av(ahb) \leq a \rightarrow (3)$ By dep. of LUB, we've $a \leq av(a \wedge b) \rightarrow (4)$ av(a,b) = a. Theorem: 1 Isotoracty of law of peoperty Let (L, A, V) be a gvz. jattace for any a, b, c.E.L. then prove that $b \leq c \Rightarrow [D]$. $a \land b \leq a \land c$ (a). $a \lor b \leq a \lor c$ Ploop: GARVED BEC To plove: 1) and anc. It is enough to prove that GILB (and, and) = and ie, (anb) 1 (anc) = anb

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

NOW $(aAB)A(aAC) = aA(BAa)AC$
$(anb) \wedge (anb) \wedge C$
= (anaun (brc)
$= \alpha \wedge (b \wedge c)$
$=a \wedge b$
$a_{Ab} \leq a_{AC}$
2). $q K B \leq a V C$
It is enough to prove LUB (avb, avc) = avc
(avb)v(avc) = avc
Now
(avb) v (avc) = av (bva) VC
= av (avb) vc
$=(ava) \vee (bvc)$
$= q \vee (b \vee c)$
= avc
$avb \leq ave$
Theorem: 2 DRetoPhattere Prequality Let (LSA, V) be a strep lattice tor any a, b, c E L, the following proguality
bolds. i , av(bAC) \leq (avb) \land (axc)
ii). an (bvc) ≥ (anb) v(anc)
Proof:
D. ar(bac) < (avb) A (avc)
From the defn. of LUB, It is obvious that
$a \leq avb \rightarrow (1)$
and bac Eb Eavb
$\Rightarrow bac \leq avb \rightarrow (a)$
\rightarrow (2)

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

from (1) and (2), avb is an upper bound of Ja, bacy Honce avb > av(bAc) -> (A) flom the defn of LUB, it is obvious that a Earc -> (3) and bacecearc \Rightarrow bac $\equiv avc \rightarrow (a)$ FLOM (3) and (4), ave is an UB of Za, breg Hence $avc \geq av(bAC) \rightarrow (B)$ FLOOM (A) and (B), wo've av (BAC) & ALB of javb, avc 3. \therefore av (bAC) \leq (avb) A (avc) Hence ploved (i) ii). $an(Byc) \geq (anb) \vee (anc)$. WHIT azand -> [] and BYC > b > a1b Brc zanb -> (2) From (1) and (2), and is an LB of 29, by c3 Hence and E an (bvc) -> (c) WKT azanc -> (3) and brezezanc From (3) & (4), and is an LB of Ea, breg Hence anc = an(bvc) -> (D) From (c) and (d), we've an(bvc) is an UB of Janb, ancy. · an(bro) ≥ (anb) v(anc) Hence peoved (ii).