

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB201 – DIGITAL SYSTEMS DESIGN

II YEAR/ III SEMESTER

UNIT 2 – COMBINATIONAL CIRCUITS

TOPIC- 2.3 – MULTIPLEXER and DEMULTIPLEXER

What is a Multiplexer?

 \succ Multiplexer is a combinational circuit that has maximum of 2n data inputs, 'n' selection lines and single output line.

 \geq One of these data inputs will be connected to the output based on the values ϕ f selection lines.

Multiplexing Techniques

> 4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y.

Y

One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines.

Selection Lines					
S ₁	S ₀				
0	0				
0	1				
1	0				
1	1				

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

Output
Y
I _O
l ₁
l ₂
l ₃

>We can implement this Boolean function using Inverters, AND gates & OR gate.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

 \succ We require two 4x1 Multiplexers in first stage in order to get the 8 data inputs.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

>Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one output Y

	Selection Inputs						
S ₂	S ₁	S ₀	Y				
0	0	0	I ₀				
0	0	1	l ₁				
0	1	0	l ₂				
0	1	1	l ₃				
1	0	0	I ₄				
1	0	1	I ₅				
1	1	0	I ₆				
1	1	1	I ₇				

Activity Time

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

➢We require two 8x1 Multiplexers in first stage in order to get the 16 data inputs.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

 $\geq 16x1$ Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one output Y.

Selection Inputs		Output		
S ₃	S ₂	S ₁	S ₀	Y
0	0	0	0	Io
0	0	0	1	I ₁
0	0	1	0	l ₂
0	0	1	1	l ₃
0	1	0	0	I ₄
0	1	0	1	I ₅
0	1	1	0	I ₆
0	1	1	1	I ₇
1	0	0	0	I ₈

Typical Application of a MUX

What is De Multiplexer?

 \succ De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, 'n' selection lines and maximum of 2n outputs.

 \geq One of these data inputs will be connected to the output based on the values ϕ f selection lines.

DeMultiplexer - Types

1x4 De-Multiplexer

 \geq 1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, Y2, Y1 &Y0.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

The single input 'I' will be connected to one of the four outputs, Y3 to Y0 based on the values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below.

Selectio	on Inputs	Outputs				
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Y ₀	
0	0	0	0	0		
0	1	0	0	I	0	
1	0	0	I	0	0	
1	1	I	0	0	0	

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit diagram of 1x4 De-Multiplexer is shown in the following figure.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

1x8 De-Multiplexer

1x8 De-Multiplexer has single input, three selection lines and eight outputs.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to Y0. The Truth table of 1x8 De-Multiplexer is shown below.

Sel	Outputs									
s ₂	s ₁	s ₀	Y ₇	\mathbf{Y}_{6}	\mathbf{Y}_5	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

Applications

Demultiplexer is used to connect a single source to multiple destinations. The main application area of demultiplexer is communication system where multiplexer are used.

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

9/18/2024

23ECB201/ DIGITAL SYSTEMS DESIGN/Dr.B.SIVASANKARI/Professor/ECE/SNSCT

THANK YOU

9/18/2024

