

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

UNIT II

ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Quadratic Form:

A homogeneous polynomial of Second degree in any number of variables is called a guadratic form.

Ex:
$$x_1^2 + 5x_1x_2 + 2x_2^2$$
 is a quadratic form in the
Variables x_1 and x_2 .

Note : Matrix of the guadratic form

$$A = \begin{bmatrix} c_{0}ef \ of \ x_{1}^{2} & \frac{1}{2} \ c_{0}ef \ of \ x_{1} x_{2} & \frac{1}{2} \ c_{0}ef \ of \ x_{1} x_{3} \\ \frac{1}{2} \ c_{0}ef \ of \ x_{1} x_{3} & \frac{1}{2} \ c_{0}ef \ of \ x_{2} x_{3} \\ \frac{1}{2} \ c_{0}ef \ of \ x_{1} x_{3} & \frac{1}{2} \ c_{0}ef \ of \ x_{2} x_{3} \\ \frac{1}{2} \ c_{0}ef \ of \ x_{1} x_{3} & \frac{1}{2} \ c_{0}ef \ of \ x_{3} x_{3} \end{bmatrix}$$

Nature of Quadratic form :

Let $Q = x^T A x$ be the given real quadratic form, where A is the matrix of the quadratic form. Canonical form:

Of a real avaidatic form $\mathcal{R} = X^T A X$, the Canonical form is $Y^T \mathcal{D} Y$ (or) $A_1 y_1^2 + A_2 y_2^2 + \cdots + A_0 y_n^2$ which is obtained by an orthogonal transformation.

Rank :

If the rank of A is r, then the canonical form of Q consists only 'r' square terms.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035. TAMIL NADU

DEPARTMENT OF MATHEMATICS

Index :

The number of positive source terms in the Canonical form is called the index of the Quadratic form. It is denoted by S. Signature : The difference between the number of positive and negative source terms in the canonical form. Positive Definite : If all the eigen values of A are positive. Negative Definite : If all the eigen values of A are negative. Positive Semi Definite : If atleast one eigen value is zero and the remaining are positive. Negative Semi Definite : If atleast one eigen value is zero and the remaining are negative. In Definite : If Some eigen values are positive and some eigen values are negative.

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Problems :

(1) Find the matrix of the quadratic form $2x^2 + 3y^2 + az^2 + 2xy$
Soln: $Q = \begin{bmatrix} cref of x^2 & 1/2 \ cref of xy & 1/2 \ cref of xz \end{bmatrix}$ $Q = \begin{bmatrix} r_2 \ cref of yx & cref of y^2 & 1/2 \ cref of yz \end{bmatrix}$ $= \begin{bmatrix} 1/2 \ cref of zx & 1/2 \ cref of zy & cref of z^2 \end{bmatrix}$
$= \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
(2) Write the Quadratic form for the following matrix:
$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix}$
Soln: Gieneral form:
$Q = a_{11} x_1^2 + a_{22} x_2^2 + a_{33} x_3^2 + 2 a_{12} x_1 x_2 + 2 a_{23} x_2 x_3 + 2 a_{31} x_3 x_1 + 2 a_{31} x_3 x_1$
$Q = \chi_1^2 + 2\chi_2^2 + 3\chi_3^2 + 2\chi_1\chi_2 + 2\chi_2\chi_3 - 2\chi_3\chi_1$