

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

DEPARTMENT OF AUTOMOBILE ENGINEERING

COURSE NAME : 23AUB201 – AUTOMOTIVE ELECTRICAL DRIVES AND CONTROLS

II YEAR / III SEMESTER

Unit 2 – Charging and Starting Systems

Topic : DC Fast Charging and Super Charger

- *** DC Fast Charging** refers to a high-powered charging method for electric vehicles.
- It delivers direct current (DC) electricity directly to the vehicle's battery, allowing for significantly faster charging compared to alternating current (AC) charging methods.
- Designed to rapidly charge electric vehicles, significantly reducing the time needed to recharge compared to standard AC charging.
- Commonly used in public charging stations, particularly along highways and in urban areas, to support long-distance travel and increase convenience for EV users.

***** Power Levels:

- DC fast chargers typically operate at power levels ranging from 50 kW to 350 kW or more.
- Depending on the vehicle's battery capacity and state of charge (SOC), DC fast charging can replenish an EV's battery to 80% in 20 to 30 minutes.

***** Range Recovery:

Provides approximately 100-200 miles of range in as little as 30 minutes, depending on the charger and vehicle specifications.

CONNECTORS USED

CCS (Combined Charging System):

- ➢ Widely used in Europe and North America.
- > Combines AC and DC charging capabilities into one connector.
- Supports higher power levels (up to 350 kW).

CHAdeMO:

- Originating in Japan, used by several manufacturers including Nissan and Mitsubishi.
- Supports DC charging typically up to 62.5 kW (with newer versions offering higher power).
- Requires a separate AC charging port for standard charging.

♦ GB/T:

- > The standard for DC fast charging in China.
- Supports both AC and DC charging but differs in connector design from CCS and CHAdeMO.

- Installation: DC fast charging stations require more robust electrical infrastructure due to the high power levels involved, often necessitating dedicated electrical upgrades and grid connections.
- Location: Typically installed at strategic locations such as highway rest stops,
 shopping centers, and urban areas to enhance convenience and accessibility for
 EV users.

- Reduced Charging Time: Significantly cuts down the time needed for charging, making long-distance travel more feasible.
- Enhanced Range: Allows EV owners to recover range quickly, minimizing downtime.
- Convenience: Facilitates the adoption of electric vehicles by addressing range anxiety and enhancing the overall user experience.

- Cost: The installation of DC fast chargers is more expensive than AC charging stations due to the required infrastructure and equipment.
- Battery Health: Frequent use of DC fast charging can lead to increased wear and tear on some battery chemistries, potentially impacting long-term battery life.
- Availability: While growing rapidly, the network of DC fast chargers may not yet be as widespread as traditional gas stations, particularly in rural areas.

SUPERCHARGER

- Superchargers are a specific type of high-power DC fast charging station designed primarily for electric vehicles (EVs), notably those manufactured by Tesla.
- Superchargers provide rapid charging for Tesla vehicles, enabling long-distance travel by minimizing downtime during charging.
- Supercharger stations are strategically located along major highwavs and in urban areas to facilitate convenient access for Tesla owners.

SUPER CHARGER

***** Power Levels:

- Tesla's Superchargers initially operated at 120 kW but have evolved to the V3 Supercharger, which supports charging rates up to 250 kW.
- > The higher power levels allow for faster charging, typically replenishing about

75 miles of range in just 5 minutes.

Connector Type:

Tesla vehicles use a proprietary connector for Supercharging, although recent updates have included compatibility with CCS connectors in some regions to allow other EVs to charge at Supercharger stations.

SUPER CHARGER

Network and Infrastructure

Global Expansion:

Tesla has deployed a vast network of Superchargers worldwide, with thousands of stations in North America, Europe, and Asia.

***** Station Design:

Supercharger stations typically feature multiple charging stalls to accommodate several vehicles simultaneously, often with amenities such as restrooms and dining options nearby.

THANK YOU !!!