

Weighted residual techniques

General Trial function:

$$u = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Substitute the trial function in differential equation to get the residue function. *POINT COLLOCATION METHOD:*

R(x)=0

R(x) \longrightarrow Residue function

Here the point x is between these limits. If the limit is 0 to 1. For two unknowns any two point between these limits. For example

X value is
$$\frac{1}{4}$$
 X value is $\frac{3}{4}$

For three unknowns any two point between these limits. For example

X value is $\frac{1}{4}$ *X* value is $\frac{2}{4}$ *X* value is $\frac{3}{4}$

SUB DOMAIN METHOD:

$$\int R(x).dx = 0$$

Here the limit should be taken into two intervals. If the limit is O to 1

The limit varies between 0 - 0.5

The limit varies between 0.5 - 1

$$\int_{0.5}^{1} R(x) dx = 0$$

 $\int^{0.5} R(x) dx = 0$

LEAST SQUARE METHOD:

$$\int R(x) \cdot \frac{dR}{da_i} dx = 0 \qquad i = 0, 1, 2, 3 \dots$$

Differentiate the R(x) with respect to a_1, a_2

GALERKIN METHOD:

$$\int R(x).\phi(x).dx = 0$$

 $\phi(x)$ Weighting function (Function associated with unknown trial function

$$\phi(x) = \phi_0 + a_2 \phi_1 + a_3 \phi_2$$

Prepared by Dr.M. SUBRAMANIAN/Professor/Mechanical/16ME401/ Finite Element Analysis

Rayleigh Ritz Method

For Beam the Fourier series equation $y = \sum_{n=1,2,3}^{\infty} a \sin \frac{n\pi x}{l}$ $y = a_1 \sin \frac{\pi x}{l} + a_2 \sin \frac{3\pi x}{l}$

For Cantilever Bar (Axial Loading)

$$u = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$$

Where $a_1, a_2 \& a_3$ are Ritz parameters THE TOTAL POTENTIAL ENERGY OF THE BEAM:

$$\pi = U - H$$

 $U \rightarrow$ Strain Energy, $H \rightarrow$ Work Done by External Force

STRAIN ENERGY FOR TRANSVERSE LOADING:

$$U = \frac{EI}{2} \int_{0}^{l} \left(\frac{d^2 y}{dx^2}\right)^2 dx$$

STRAIN ENERGY FOR AXIAL LOADING:

$$U = \frac{EA}{2} \int_{0}^{l} \left(\frac{d^{2}u}{dx^{2}}\right)^{2} dx$$

WORK DONE BY EXTERNAL FORCE:

 $H = \int_{0}^{t} wydx$ For SSB with UDL throughout its length

 $H = Wy_{\text{max}}$ For SSB with Point Load at its mid - point of length

 $H = \int_{0}^{\infty} wydx + Wy_{max}$ For SSB with UDL throughout its length and Point Load at its mid - point of length

$$H = \int_{0}^{1} P dx = \int_{0}^{l} \rho A u dx$$
 For Cantilever Bar with axial loading

Prepared by Dr.M. SUBRAMANIAN/Professor/Mechanical/16ME401/ Finite Element Analysis

Moment of Inertia

BENDING MOMENT:

$$M = EI \frac{d^2 y}{dx^2} \qquad \text{E roung's 1 nodulus, } \overline{\Gamma}$$

EXACT SOLUTION:

SSB Max Deflection with UDL throughout its length $y_{\text{max}} = \frac{5}{384} \frac{wl^4}{EI}$

SSB Max Bending Moment with UDL throughout its length $M_{centre} = \frac{wl^2}{8}$

SSB Max Deflection with Point Load at its mid - point of length $y_{max} = \frac{wl^3}{48EI}$ SSB Max Bending Moment with Point Load at its mid - point of length $M_{centre} = \frac{wl}{4}$

SSB Max Deflection with UDL throughout its length and Point Load at its mid - point of length $y_{max} = \frac{5}{384} \frac{wl^4}{EI} + \frac{wl^3}{48EI}$

SSB Max Bending Moment with UDL throughout its length and Point Load at its mid - point of length $M_{centre} = \frac{wl^2}{8} + \frac{wl}{4}$

GENERAL TRIGONOMETRIC FUNCTIONS USED IN RITZ METHOD:

$$\sin^{2} x = \frac{1 - \cos 2x}{2} \qquad \cos^{2} x = \frac{1 + \cos 2x}{2}$$
$$\sin A \sin B = \frac{\cos(A - B) + \cos(A + B)}{2}$$

Prepared by Dr.M. SUBRAMANIAN/Professor/Mechanical/16ME401/ Finite Element Analysis

SPRINGS: THE TOTAL POTENTIAL ENERGY OF THE BEAM:

 $\pi = U - H$

 $U \rightarrow$ Strain Energy, $H \rightarrow$ Work Done by External Force

STRAIN ENERGY: $U = \frac{1}{2}k\delta^2$ k-Stiffness of Spring, δ -Deflection

WORK DONE BY EXTERNAL FORCE: H=Fu, Force acting on the spring, u- Displacement