

SNS COLLEGE OF TECHNOLOGY An Autonomous Institution Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECT202 – SIGNALS AND SYSTEMS

II YEAR/ III SEMESTER

UNIT 3 – LTI CONTINUOUS TIME SYSTEMS

TOPIC – LTI SYSTEMS USING LAPLACE TRANSFORM

L&PL&CE TRANSFORM

- Laplace Transform represents continuous time signals in terms of complex exponential i.e., e^{-st}
- Laplace transform can be used to analyse signals or functions which are not absolutely integrable
- Continuous time signals can also be analysed effectively using Laplace transforms
- Laplace transform of impulse response is called System Function (or) **Transfer Function**
- Laplace transform is divided into Unilateral & Bilateral Laplace Transform

• System Transfer Function: Ratio of the output to the input.

$$\mathbf{H(s)} = \frac{Y(s)}{X(s)}$$

Frequency Response: •

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} x(\omega)$$

LTI SÝSTEM

• Condition for an Linear Time Invariant (LTI) system to be causal:

$$h(t) = 0, t < 0$$

• Condition for an Linear Time Invariant (LTI) system to be stable:

• Impulse response is the output generated by the system, when an unit impulse is applied at the input.

$$x(t) = \delta(t) \longrightarrow LTI System \longrightarrow y$$

r(t) = h(t)

δ (t) = 1 for t = 0 = 0 for $t \neq 0$

TIME DOMAIN INTO FREQUENCY DOMAIN

Time domain

Frequency domain

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT 08/10/2024

y(t) = h(t) * x(t)Inverse Laplace $Y(s) = H(s) \cdot X(s)$

TIME DOMAIN INTO FREQUENCY DOMAIN

time domain

Laplace domain or complex frequency domain

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT 08/10/2024

08/10/2024

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

BASIC SIGNALS

Unit Impulse signal

$$r(t) = t \text{ for } t \ge 0$$
$$= 0 \text{ for } t < 0$$

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

Laplace x f) - x(f)Transform of x(t) = u(t)2 $x(s) = \int x(t) e^{-st} dt$ X (S) - S s(t) e 8 8 -St qf d F 2 1 ∞ O n -st 2 s2 2 0 -S D

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

Find the old of the system: h(t)

$$H(s) = \frac{1}{s} \times (s) = \frac{1}{s+2}$$

$$H(s) = \frac{\gamma(s)}{\chi(s)}$$

$$H(s) = \frac{\gamma(s)}{\chi(s)}$$

$$Y(s) = H(s) \cdot \chi(s)$$

$$= \frac{1}{s} - \frac{1}{s+2}$$

$$= \frac{1}{s} + \frac{1}{s+2} \Rightarrow h(s+2) + B(s)$$

$$Y(s)$$

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

= u(t), $x(t) = e^{2t}u(t)$

S= -2 1 = A(0) + B(-2)B =- 1/

3 2 (S+2) S = / y(t) = 1/2

 $Rc d = y(t) + y(t) = x(t) \rightarrow Find Impulse Response$ Apply Inverse Laplace Transform RC SY(S) + Y(S) = X(S) : $H(S) = \frac{y(S)}{x(S)} = \frac{1}{Rc S+1}$ Impulse Response :-

H(S) = RCS+1

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

RC

08/10/2024

d2 y(t) - 2 y(t) = x(t)dt y(t) dt2 Y(3) - SY(S) - 2 Y(S) = X(S) S = -1 B(-3) = 1 (s2-s-2) Y(S) = X(S) :. Y(S) (S-2) (S+1) H(S) x(S) 5-5-2 5-2 5+1 (s-2) (S+1) 1 = A(S+1) + B(S-2)

08/10/2024

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

put S=2 3A=1 A = 3(541) 3 (9-2) = 1/3 [5-2 u (t) $h(t) = \frac{1}{3}e^{2t}u(t)$

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

SOLVING DIFFERENTIAL EQUATION

Shifting Property – Unilateral Laplace Transform

L[(d/dt) x(t)] = S X(S) - x(0)

 $L[(d^{2}/dt^{2}) x(t)] = S^{2} X(S) - S x(0^{-}) - x'(0^{-})$

 $L[(d^{3}/dt^{3}) x(t)] = S^{3} X(S) - S^{2} x(0^{-}) - S x'(0^{-}) - x''(0^{-})$

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

solve using Differential Equa	tion de y
with initial condition y(0) =	-2 and
$\frac{d}{dt} \forall (t) + 5 \forall (t) = x (t)$	(S+2) (S+5)
SY(S) - 8(0) + 5Y(S) = X(S)	3 =
(1) (1) (2) -3	put s=-F
SY(S) + 2+5Y(S) - 5+2	3 = B(-3
Y (9) [.5+5] +2 = 3	B = - 1
$Y(g)[s+5] = \frac{3}{s+2} - 2$	y (S) = (
Y(9) = 3 - 2	y (S)
(3+2) [3+5] (3+5)	:. 46

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

y(t) + 5y(t) = x(t) $i|_{p} x(t) = 3e^{2t} u(t)$

$$= \frac{A}{S+2} + \frac{B}{S+5}$$

5
$$put S = -2$$

5 $3 = A(3)$
 $A = 1$

$$\begin{bmatrix} 1 \\ 5+2 \end{bmatrix} - \begin{bmatrix} 1 \\ 5+5 \end{bmatrix} - \frac{2}{5+5}$$

$$\frac{1}{S+2} - \frac{3}{S+5}$$
(4) = e^{-2t} u(t) - $3e^{-5t}$ u(t)

SYSTEM TRANSFER FUNCTION

The input output selation of a System
show is given by
$$\frac{d^2}{dt^2} y(t) + 4 \frac{d}{dt} y(t)$$

 $d'_{tt} x(t) + 2 x(t) \cdot 3 ind system transfer
S^2 y(s) + 4 sy(s) + 3 y(s) = s x(s) +
y(s) $[s^2 + 4s + 3] = x(s)[s+2]$
 $H(s) = \frac{y(s)}{x(s)} = \frac{s+2}{s^2 + 4s + 3}$
Jeq Response:-
 $H(w) = \frac{y(w)}{x(w)} = \frac{jw+2}{(w)^2 + 4jw}$$

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

y(t) + 3y(t) = stem Function for

+ 2 X (S) (2)

H(S)

h(t) =

ratation input output zh a The by $\frac{d^2}{dt^2}$ y(t) + 4 $\frac{d}{dt}$ y(t) + 3 y(t) = for x(t) + 2 x(t) alt

	H (5) -	S+2
nes	1101-	s2+45+3

S+2		A		R	
(S+3)(S+1)	1	5+3	_+	5+1	

St2 =	+ (CH2) A	B (S+3)
-------	-----------	---------

sub S=-1	Sub S = -3
1 = 2 B	-1 = -2 A
B=1/2	A = 1/2

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

(f)

ASSESSMENT

- 1. What is meant by impulse response?
- 2. Define Unit step and Unit Impulse Signal.
- 3. The condition of an LTI system to be causal is given by ------
- 4. The system transfer function is given by ------
- 5. Laplace transform of Unit step function is given by ------
- 6. Laplace Transform of unit ramp function is given by ------

THANK YOU

LTI SYSTEM USING LT/23ECT202 – SIGNALS AND SYSTEMS/R.SATHISH KUMAR/ECE/SNSCT

08/10/2024

