WAVE FUNCTION

A variable quantity which characterizes de Broglie waves is known as wave function and is denoted by the symbol Y. The value of the wave function associated with a moving particle at point (x,y,z) and time 't' gives the probability of finding the particle at that time and at that point.

PHYSICAL SIGNIFICANCE OF WAVE FUNCTION

The wave function has **no physical meaning.**

It is a **complex quantity** representing the matter **wave of a particle**.

│ψ │ 2 is **real and positive**, amplitude may be positive or negative but the intensity(square of amplitude) is always real and positive.

 $\Box \mid \psi \mid^2$ represents the probability density or probability of finding the particle in the **given region.**

 \Box For a given volume dτ, probability **P** = **∫** ∫ | ψ |² dτ where dτ =dx dy dz

The **probability value** lies between **0 and 1.**

SCHROEDINGER'S WAVE EQUATION

Austrian scientist, **Erwin Schroedinger**

- describes the wave nature of a particle , derived in **mathematical form**
- connected the expression of **De-Broglie wavelength** with **classical wave equation**
- □ two forms of **Schroedinger's wave equation**
- **T** Time **Independent** wave equation
- **Time dependent** wave equation

SCHROEDINGER'S TIME INDEPENDENT WAVE EQUATION

Let us consider a system of stationary wave associated with a **moving particle.** Let ψ be the wave function of the particle along x, y and z coordinates axes at any time t.

The differential wave equation of a progressive wave with wave velocity 'u' can be written in terms of Cartesian coordinates as,

$$
\frac{d^2\psi}{dx^2} + \frac{d^2\psi}{dy^2} + \frac{d^2\psi}{dz^2} = \frac{1}{v^2}\frac{d^2\psi}{dt^2} \qquad \frac{\partial^2\psi}{\partial x^2} + \frac{\partial^2\psi}{\partial y^2} + \frac{\partial^2\psi}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2\psi}{\partial t^2} \dots (1)
$$

The solution of eqn(1) is

$$
\psi = \psi_{0} e^{-i\omega t}
$$

Differentiating the above equation with respect to time 't' twice,

$$
\frac{\partial \psi}{\partial t} = -i \omega \psi_{0} e^{-i\omega t} = -i \omega \psi \qquad \frac{\partial^{2} \psi}{\partial t^{2}} = -\omega^{2} \psi(2)
$$
\nSubstituting (2) in (1)
\n
$$
\frac{\partial^{2} \psi}{\partial x^{\beta}} + \frac{\partial^{2} \psi}{\partial y} + \frac{\partial^{2} \psi}{\partial y \beta}
$$
\nSubstituting (2) in (1)
\n
$$
\frac{\partial^{2} \psi}{\partial x^{\beta} \text{YBD}} + \frac{\partial^{2} \psi}{\partial y \beta}
$$
\n
$$
\frac{\partial^{2} \psi}{\partial y \beta}
$$
\n
$$
\frac{\partial^{2} \psi}{\partial y \beta}
$$
\nSubstituting (2) in (1)

SCHROEDINGER'S TIME INDEPENDENT WAVE EQUATION

$$
\omega = 2\pi v \qquad \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 v^2 \psi}{V^2}
$$
\n
$$
substituting V = v\lambda
$$
\n
$$
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 v^2 \psi}{v^2 \lambda^2} \qquad \lambda = \frac{h}{mV}
$$
\n
$$
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-4\pi^2 m^2 V^2 \psi}{h^2}
$$
\n
$$
total energy E = \frac{1}{2} mV^2 + V
$$
\n
$$
2m(E - V) = m^2 V^2
$$
\n
$$
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = \frac{-8\pi^2 m(E - V)\psi}{h^2} \qquad \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \nabla^2, \text{where } \nabla is Laplacian Operator
$$
\n
$$
\nabla^2 \psi = \frac{-8\pi^2 m(E - V)\psi}{h^2} \Rightarrow \frac{-2m}{h^2} (E - V)\psi \qquad \text{since } \hbar = \frac{h}{2\pi}
$$
\n
$$
\nabla^2 \psi + \frac{2m}{h^2} (E - V)\psi = 0 (Time in the present series, the potential energy is the same as a constant, where V is the same as a constant, we get
$$

SCHROEDINGER'S TIME DEPENDENT WAVE EQUATION

The solution of the classical differential eqn. of wave system is, Differentiating the above equation with respect to time 't' ,

$$
\frac{\partial \psi}{\partial t} = -i \omega \psi_{0} e^{-i \omega t} = -i \omega \psi
$$

Substituting E=h $\omega = 2\pi v$

$$
\frac{\partial \psi}{\partial t} = -i2\pi \psi \psi = -i2\pi \left(\frac{E}{h}\right) \psi
$$

$$
\frac{\partial \psi}{\partial t} = -i2\pi \psi \psi = -i\left(\frac{E}{h}\right) \psi = -i^2 \left(\frac{E}{h}\right) \psi \quad \text{sin c e} \hbar = \frac{h}{2\pi}
$$

$$
E \psi = i\hbar \frac{\partial \psi}{\partial t}
$$

$$
\nabla^2 \psi + \frac{2m}{\hbar^2} (E - V)\psi = 0
$$
(*Time independent Schroedinger wave eqn*)

$$
\nabla^2 \psi + \frac{2m}{\hbar^2} E \psi - \frac{2m}{\hbar^2} V \psi = 0
$$
<sup>19PYBJ03 / Physics for Engineers
C.Sathyapriya / AP / Physics</sup>

 ∂t

B103 / Physics for Engineers C.Sathyapriya / AP / Physics

$$
5
$$

 $\psi = \psi_{0}^{\circ}e^{-i\omega t}$

SCHROEDINGER'S TIME DEPENDENT WAVE EQUATION

$$
\nabla^2 \psi + \frac{2m}{\hbar^2} i\hbar \frac{\partial \psi}{\partial t} - \frac{2m}{\hbar^2} V \psi = 0
$$

\nmultiply throughout by $\frac{\hbar^2}{2m}$
\n
$$
\frac{\hbar^2}{2m} \nabla^2 \psi + E \psi - V \psi = 0
$$
\n
$$
-\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi \text{ (Timedependent Schroedinger wave eqn)}
$$

The Hamiltonian operator

$$
H=-\frac{\hbar^2}{2m}\nabla^2+V
$$

E energy operator $H \psi = E \psi$